

Versuch 1 - Klebstoff auf Citronensäure-Basis

Geräte	Chemikalien		Skizze:
2 Bechergläser (50 ml)	Citronensäure	<u>(!)</u>	A
Tiegelzange		•	9
Gasbrenner	Ethylenglykol		A
Waage		V W	
Spatel			
Glasstab			
Petrischale			
	1		Abbildung 1-Versuchsaufbau Klebstoff

Versuchsdurchführung:

In ein Becherglas (50 ml) werden 6 g Citronensäure eingewogen und anschließend 1 g Ethylenglykol hinzugefügt.

Das Gemisch wird unter leichtem Schwenken vorsichtig über der Brennerflamme erhitzt. Die Komponenten verflüssigen sich und dürfen nur **leicht** schäumen.

Wenn sich die Viskosität erhöht, kann der Kleber regelmäßig getestet werden. Dazu kann versucht werden unter Verwendung einiger Tropfen des Klebers, einen Glasstab an einem umgedrehten Becherglas (50 ml) zu befestigen. Zudem kann der Kleber auf eine Petrischale gegeben werden, um anschließend mit einem Glasstab Fäden zuziehen. Auch das Testen der Klebkraft mit weiteren Materialien (z. B. Schraubverschlüsse aus Kunststoff, Papier, Pappe) ist möglich.

Hinweis: Glasgeräte müssen für die Reinigung längere Zeit in warmes Wasser gelegt werden.

Beobachtungen:

- heterogenes Stoffgemisch
- Entstehung eines viskosen, leicht gelblichen, Fäden ziehenden Stoffs
- Produkt ist nach dem Erkalten fest.
- Glasstab bleibt am Becherglas kleben: gute Klebkraft
- eventuell sichtbar: Flüssigkeit, die an der Wand des Becherglases kondensiert

Fachlicher Hintergrund:

Bei der Reaktion von Citronensäure mit Ethylenglykol handelt es sich um eine Polykondensationsreaktion, bei der sich zwischen den Hydroxylgruppen des Ethylenglykols und den Carboxylgruppen der Citronensäure Esterbindungen unter Abspaltung von Wasser ausbilden. Je länger die Reaktion läuft, desto längere Polyesterketten entstehen und desto höher wird die Viskosität.

Green Chemistry:

Dieser Versuch eignet sich gut als Beispiel für eine umweltfreundliche Synthese eines Kunststoffes im Schulkontext und berücksichtigt mehrere Green Chemistry Prinzipien.

Vermeidung von Abfall	Es entstehen kaum Abfälle, der Klebstoff kann vollständig genutzt werden.
Atomökonomie	Nahezu alle Atome der Monomere sind auch im Produkt
	enthalten, es entsteht nur Wasser als Nebenprodukt
Durchführung	Citronensäure: biologisch abbaubarer, ungiftiger Stoff
ungefährlicher Synthesen	Ethylenglykol: gesundheitsschädlich beim Verschlucken,
und Entwicklung/	aber in kleinen Mengen gut handhabbar
Verwendung sicherer	Polyester/ Klebstoff: biologisch abbaubar, ungiftig
Chemikalien	
Energieeffizienz	nur kurzzeitiges Erhitzen erforderlich, geringer
	Energieeinsatz
Fun accordance Danascours	
Erneuerbare Ressourcen	Citronensäure stammt aus nachwachsenden Quellen.
Erneuerbare Ressourcen	Citronensäure stammt aus nachwachsenden Quellen. Ethylenglykol kann petrochemisch oder biobasiert
Erneuerbare Ressourcen	-
Nebenprodukte	Ethylenglykol kann petrochemisch oder biobasiert
	Ethylenglykol kann petrochemisch oder biobasiert hergestellt werden.
Nebenprodukte	Ethylenglykol kann petrochemisch oder biobasiert hergestellt werden.

Kontexte

Als Kontext für den Unterricht bietet sich einerseits die historische Betrachtung der Verwendung von Klebstoffen und andererseits die Betrachtung bzw. der Vergleich von verschiedenen Klebstoffen in Bezug auf ihre Umweltverträglichkeit an.

Bezug zum Rahmenlehrplan (SenBJF & MBJS, 2021)

- Q1 "Natürliche und synthetische makromolekulare Stoffe"
- Themenfeld: "Kunststoffe problematische Alleskönner"
- Grundkurs/ Leistungskurs Chemie

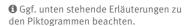
Basiskonzept	Zuordnung des Versuchs
Konzept vom Aufbau und von	Verknüpfung Kettenlänge und Verzweigungsgrad des
den Eigenschaften der Stoffe	Polyesters mit den Eigenschaften (zunehmende
und ihrer Teilchen	Viskosität)
Konzept der chemischen	Veranschaulichung einer Polykondensationsreaktion
Reaktion	als wichtiger Reaktionstyp
Energiekonzept	endotherme Reaktion, Erhitzen als Voraussetzung für
	die Bindungsspaltung

Referenzen:

Senatsverwaltung für Bildung, Jugend und Familie Berlin; Ministerium für Bildung, Jugend und Sport des Landes Brandenburg [SenBJF& MBJS]. (2021). Rahmenlehrplan für die gymnasiale Oberstufe - Teil C Chemie. Abgerufen am 19. Oktober 2022, von https://moodle.hu-

 $ber lin. de/plug in file. php/4913165/mod_resource/content/10/Rahmenlehr plan \%20 f\%C3\%BCr\%20 die \%20 gymnasiale. pdf with the first plan file of the file of th$

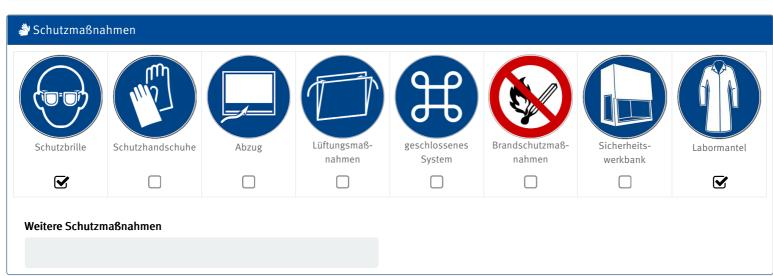
KLEBSTOFF AUF CITRONENSÄUREBASIS


Weiterführende Informationen zu Geräten sind in der Geräteverwaltung hinterlegt.

Versuchs-Kategorie:

Versuchs-Typ: Chemie

© Gerät 2 Bechergläser (50ml) Ziegelzange Brenner Waage Spatel Glastab Petrischale



C Versuchsdurchführung

- 1. a) Wiegen Sie in ein Becherglas (50 ml) 6 g Citronensäure ein und fügen Sie anschließend 1 g Ethylenglycol hinzu.
- 2. b) Erhitzen Sie das Gemisch unter leichtem Schwenken über der Brennerflamme. Die Komponenten verflüssigen sich und dürfen nur leicht schäumen.
- 3. c) Wenn sich die Viskosität erhöht, kann der Kleber regelmäßig getestet werden. Geben Sie dafür kleine Tropfen des Klebers auf ein umgestülptes Becherglas und versuchen Sie z. B. einen Glasstab daran festzukleben (warten und erkalten lassen).
- 4. d) Der Kleber kann ebenfalls auf eine Petrischale gegeben werden, um dann mit einem Glasstab Fäden zu ziehen.

⚠ Gefährdungen durch:			
Stoffliche Eigenschaften	vorhanden	weitere Gefährdungen	
KMR-Stoff 1A/1B		weitere Gefahren und Hinweise	
durch Einatmen	\checkmark		
durch Hautkontakt	\mathbf{Z}		
durch Augenkontakt		Tätigkeitsbeschränkung:	
Brandgefahr		Schülenversuch ab lahrgangsstufe 5	
Explosionsgefahr		Schülerversuch ab Jahrgangsstufe 5	
Infektionsgefahr			

Chemikalien Anmerkung H-Satz P-Satz Stoffbezeichnung - zvG Signalwort Piktogramm Tätigkeit. Тур H302 Ethylenglykol - 12060 ACHTUNG Edukt P314 P301+P312+P330 S4K H373 P261 P264 P271 P280 P304+P340+P312 Zitronensäure-1-Hydrat -ACHTUNG Edukt 35230

☐ Biostoffe/Organismen

Es werden keine Biostoffe/Organismen verwendet.

Sicherheitshinweise

Die Betriebsanweisungen und einschlägigen Regelungen für die Schule sind zu beachten.

Persönliche Schutzausrüstung

Eine Gestellschutzbrille ist zu tragen.

Ein langer, geschlossener Labormantel (Schutzkittel) ist zu tragen.

Verhalten im Gefahrenfall

Keine besonderen über die allgemeinen Maßnahmen zur Gefahrenabwehr hinausgehenden Maßnahmen nötig.

Entsorgung

Alle Reste können über den Abfluss bzw. den Hausmüll entsorgt werden.

Glasgeräte müssen für die Reinigung längere Zeit in warmes Wasser gelegt werden.

⇒ Substitution

Gefahrstoffe

Substitution von Gefahrstoffen, Verwendungsformen und -verfahren wurde geprüft. Der Versuch ist zur Vermittlung wesentlicher Lerninhalte <u>nicht verzichtbar</u> und kann unter Einhaltung der in der Versuchsvorschrift genannten Einschränkungen und mit den dort genannten Schutzmaßnahmen durchgeführt werden.

Gefährliche Stoffeigenschaften oder andere Gefährdungen, die eine Durchführung durch Schüler/innen oder Lehrkräfte grundsätzlich ausschließen würden, sind nicht bekannt. Die Stoffliste DGUV Information 213-098 in degintu.dguv.de wurde berücksichtigt.

Können Geräte oder Verfahren durch weniger gefährliche ersetzt werden?

Geräte oder Verfahren können nicht ersetzt werden.

Literatur

Haupt, P. (o. D.). Klebstoff aus Zitronensäure und Frostschutzmittel. http://www.chemieexperimente.de/exp- 19_23.html Versuch wird in folgendem Raum durchgeführt:

Labor 3'11 Walther-Nernst-Haus

Datum:	Unterschrift:	Erstellt am 26.03.2025 06:48, für
		Humboldt-Universität zu Berlin, Berlin

Versuch 2 – Herstellung einer Biokunststoff-Form

Geräte	Chemikalien
1 Becherglas (400 ml) 1 Glasstab	Essigessenz
3 Messzylinder 1 Heizrührplatte	Speisestärke
1 Rührfisch Aluminiumfolie	Wasser
Blumentopf aus Kunststoff	Glycerin
Stoff	Lebensmittelfarbe (optional)

Versuchsdurchführung:

- In ein Becherglas (400 ml) werden folgende Stoffe gegeben: 10 g Speisestärke, 60 ml Wasser, 5 ml Essigessenz, 5 ml Glycerin und optional einige Tropfen Lebensmittelfarbe. Das Gemisch muss ordentlich verrührt werden, sodass kein merklicher Bodensatz mehr vorhanden ist. Danach kann ein Rührfisch hineingegeben werden.
- 2. Vor der Herstellung des Kunststoffes muss ein Stück Stoff so zugeschnitten werden, dass der Blumentopf damit von außen verkleidet werden kann (Blumentopf steht dabei umgedereht).
- 3. Die Mischung wird anschließend auf der Heizplatte erhitzt, bis die Viskosität deutlich zunimmt. Dazu muss der Kunststoff einmal richtig aufkochen. Anschließend wird das Becherglas zum Abkühlen von der Heizplatte genommen.
- 4. Nun wird das zugeschnittene Stück Stoff in das Becherglas getaucht und möglichst vollständig mit dem Kunststoff bedeckt. Der getränkte Stoff wird dann von außen um den umgedrehten Blumentopf gelegt und die Oberfläche glattgestrichen. Falls noch etwas Kunststoff vorhanden ist, kann dieser zusätzlich auf dem Stoff verteilt werden.
- 5. Der Topf wird nun auf ein Stück Alufolie gestellt und sollte einige Zeit trocknen (evtl. einen Heißluftfön verwenden).

Beobachtungen:

 Nach dem Trocknen ist der Kunststoff ausgehärtet, aber noch plastisch verformbar und der Blumentopf kann entfernt werden, ohne dass die die Form des Kunststoffes in sich zusammenfällt.

Fachlicher Hintergrund:

Stärke ist ein natürliches Polysaccharid, das aus zwei unterschiedlichen Glucose-Polymeren besteht:

- Amylose (lineares Polymer aus α-1,4-glykosidisch verknüpften D-Glucose-Einheiten)
- Amylopektin (verzweigtes Polymer mit α-1,4- und α-1,6-glykosidischen Bindungen)

Im festen Zustand liegt Stärke in Form von halbkristallinen Körnern vor, deren Struktur durch ausgedehnte Wasserstoffbrückenbindungen zwischen den Hydroxylgruppen der Glucose-Einheiten stabilisiert wird.

Beim Erhitzen und Ansäuern einer Stärkewasser-Suspension werden diese Wasserstoffbrücken zunehmend aufgebrochen. Wasser dringt in die Stärkekörner ein, diese quellen auf und verlieren ihre geordnete Struktur – dieser Prozess wird als Verkleisterung bezeichnet. Dabei werden amylosehaltige Anteile teilweise aus den Stärkekörnern herausgelöst und bilden in der Lösung durch Verknäulen ein dreidimensionales Netzwerk (Gelbildung).

Die Essigsäure dient in diesem Zusammenhang als Protonendonator, der den pH-Wert der Suspension absenkt. Durch die saure Umgebung kann es zu einer partiellen Hydrolyse der glykosidischen Bindungen kommen, was die Kettenlänge der Polysaccharide reduziert.

Glycerin fungiert als Weichmacher. Die Hydroxylgruppen des Glycerins interagieren über Wasserstoffbrückenbindungen mit den Hydroxylgruppen der Polysaccharidketten. Dadurch werden intermolekulare Wechselwirkungen zwischen den Stärkeketten abgeschwächt, was deren Beweglichkeit erhöht. Dies führ zur Erhöhung der Elastizität des Materials.

Nach dem Erhitzen und gleichmäßigen Mischen wird das Material beim Abkühlen und Trocknen zunehmend fest. Wasser verdampft, und es bilden sich erneut Wasserstoffbrücken zwischen den Polymerketten. Das Ergebnis ist ein stärkebasierter Thermoplast, dessen mechanische Eigenschaften (Härte, Flexibilität, Transparenz) durch den Anteil an Glycerin und den Grad der Hydrolyse eingestellt werden können.

Thermoplastische Stärke gilt als biologisch abbaubar, da sie von Mikroorganismen durch enzymatische Hydrolyse zu Glucose abgebaut und anschließend verstoffwechselt werden kann. Sie stellt somit eine umweltfreundliche Alternative zu konventionellen Kunststoffen dar, die aus fossilen Rohstoffen synthetisiert werden und schwer abbaubar sind.

Green Chemistry:

Dieser Versuch eignet sich gut als Beispiel für eine umweltfreundliche Synthese eines Kunststoffes im Schulkontext und berücksichtigt mehrere Green Chemistry Prinzipien.

Vermeidung von Abfall	Es entstehen kaum Abfälle, alle eingesetzten Stoffe werden im Produkt gebunden
Durchführung ungefährlicher Synthesen und Entwicklung/ Verwendung sicherer Chemikalien	Die eingesetzten Chemikalien sowie der Kunststoff selbst sind biologisch abbaubar und ungiftig.
- : ::::	the book of the contract of
Energieeffizienz	nur kurzzeitiges Erhitzen erforderlich, geringer
Energieeffizienz	nur kurzzeitiges Erhitzen erforderlich, geringer Energieeinsatz
Erneuerbare Ressourcen	, , ,
	Energieeinsatz
Erneuerbare Ressourcen	Energieeinsatz Stärke und Glycerin stammen aus pflanzlichen Quellen.
Erneuerbare Ressourcen Nebenprodukte	Energieeinsatz Stärke und Glycerin stammen aus pflanzlichen Quellen.

Kontexte

Als Kontext für den Unterricht bietet sich beispielsweise das Thema "Materialchemie der Zukunft" an und die damit im Zusammenhang stehende Diskussion über biobasierte Kunststoffe.

Bezug zum Rahmenlehrplan (SenBJF & MBJS, 2021)

- Q1 "Natürliche und synthetische makromolekulare Stoffe"
- Themenfeld: "Kunststoffe problematische Alleskönner"
- Leistungskurs Chemie, evtl. Grundkurs unter dem Aspekt der Umweltproblematik

Basiskonzept	Zuordnung des Versuchs
Konzept vom Aufbau und von	inter- und intramolekulare Wechselwirkungen sorgen
den Eigenschaften der Stoffe	für die Eigenschaften des Kunststoffes
und ihrer Teilchen	

Referenzen:

Senatsverwaltung für Bildung, Jugend und Familie Berlin; Ministerium für Bildung, Jugend und Sport des Landes Brandenburg [SenBJF& MBJS]. (2021). Rahmenlehrplan für die gymnasiale Oberstufe - Teil C Chemie. Abgerufen am 19. Oktober 2022, von https://moodle.hu-

berlin.de/pluginfile.php/4913165/mod_resource/content/10/Rahmenlehrplan%20f%C3%BCr%20die%20gymnasiale.pdf

SimplyScience (o. D.). Biokunststoff aus Stärkepulver

https://www.simplyscience.ch/kids/experimente/biokunststoff-aus-staerkepulver

Biokunststoff aus Stärkepulver

Versuchs-Kategorie: Kunststoffe

Versuchs-Typ: Chemie

© Gerät 1 Becherglas (400ml) 1 Glasstab 3 Messzylinder (100ml, 10ml) 1 Heizrührplatte + Rührfisch 1 Spatellöffel 1 Waage Alufolie Blumentopf aus Plastik Stoffstück

1 Ggf. unten stehende Erläuterungen zu den Piktogrammen beachten.

📽 Versuchsdurchführung

- a) Geben Sie folgende Zutaten in ein Becherglas (400 ml): 10 g Speisestärke, 60 ml Wasser, 5 ml Essigessenz, 5 ml Glycerin und optional einige Tropfen Lebensmittelfarbe. Das Gemisch muss gut verrührt werden, sodass kein merklicher Bodensatz mehr vorhanden ist. Danach kann ein Rührfisch hineingegeben werden.
- b) Erhitzen Sie die Mischung anschließend auf der Heizplatte, bis die Viskosität deutlich zähflüssiger wird. Dazu muss der Kunststoff einmal aufgekocht werden. Nehmen Sie anschließend das Becherglas von der Heizplatte und lassen Sie es kurz abkühlen.
- c) Nun wird das Stück Stoff in das Becherglas getaucht und möglichst vollständig mit dem Kunststoff bedeckt. Legen Sie den Stoff von außen um den Blumentopf und streichen Sie die Oberfläche möglichst glatt. Falls noch etwas Kunststoff vorhanden ist, kann dieser noch auf dem Stoff verteilt werden.
- d) Der Topf wird nun auf ein Stück Alufolie gestellt und sollte einige Tage trocknen.

Reaktionsgleichung

Stärke + Wasser + Essigsäure + Glycerin → Stärkekleister

Weiterführende Informationen zu Geräten sind in der Geräteverwaltung hinterlegt.

▲ Gefährdungen durch: vorhanden Stoffliche Eigenschaften weitere Gefährdungen KMR-Stoff 1A/1B weitere Gefahren und Hinweise durch Einatmen Verbrennungsgefahr durch Heizplatte und heißen Kunststoff durch Hautkontakt \mathbf{V} durch Augenkontakt \mathbf{V} Brandgefahr Tätigkeitsbeschränkung: Explosionsgefahr Schülerversuch ab Jahrgangsstufe 5 Infektionsgefahr

拳 Schutzmaßnahmen Lüftungsmaß-Schutzbrille SchutzhandschuheAbzug nahmen System nahmen werkbank \mathbf{V} \mathbf{V} Weitere Schutzmaßnahmen Lange Haare zusammenbinden Laborgeeignetes Schuhwerk tragen ☐ Chemikalien

Stoffbezeichnung - ZVG	Anmerkung	Signalwort	Piktogramm	H-Satz	P-Satz	Tätigkeit.	Тур
Essigsäure 25% - 11400.009	Essigessenz	GEFAHR		H290 H314	P280 P308+P310 P301+P330+P331 P303+P361+P353 P305+P351+P338	S4K	Edukt
Glycerin - 11980		-				+	Edukt
Stärke - 12160		-				+	Edukt
Wasser -		-				+	Edukt
Stärke-Lösung - 12160.002	Stärkekleister mit angelagerten Glycerin- Molekülen	-				+	Produkt

☐ Biostoffe/Organismen

Es werden keine Biostoffe/Organismen verwendet.

Sicherheitshinweise

Die Betriebsanweisungen und einschlägigen Regelungen für die Schule sind zu beachten.

Persönliche Schutzausrüstung

Eine **Gestellschutzbrille** ist zu tragen.

a Ein langer, geschlossener **Labormantel** (Schutzkittel) ist zu tragen.

Verhalten im Gefahrenfall

Keine besonderen über die allgemeinen Maßnahmen zur Gefahrenabwehr hinausgehenden Maßnahmen nötig.

Entsorgung

Feststoffabfall

≓ Substitution	
Gefahrstoffe	
Substitution von Gefahrstoffen, Verwendungsformen und -verfahren wurde geprüft. Der Versuch ist unter Einhaltung der in der Versuchsvorschrift genannten Einschränkungen und mit den dort genan Gefährliche Stoffeigenschaften oder andere Gefährdungen, die eine Durchführur ausschließen würden, sind nicht bekannt. Die Stoffliste DGUV Information 213-0	nten Schutzmaßnahmen durchgeführt werden. g durch Schüler/innen oder Lehrkräfte grundsätzlich
önnen Geräte oder Verfahren durch weniger gefährliche ersetzt werden? Geräte oder Verfahren können nicht ersetzt werden.	
Literatur	Versuch wird in folgendem Raum durchgeführt:

Datum:	Unterschrift:		Erstellt am 13.01.2025 13:59, für
		Hui	mboldt-Universität zu Berlin, Berlin

Versuchsraum 3.11

https://projektbiokunststoff.wordpress.com/2017/02/07/kunststoff-ausstaerke/

Versuch 3 - Polyesterschaum

Geräte	Chemikalien
Becherglas (250 ml) Glasstab	Citronensäure 🗘
Waage	Polyvinylalkohol
Messzylinder	(w = 30 %)
	Natron
	Lebensmittel-
	farbe

Versuchsdurchführung:

Die Polyvinylalkohol-Lösung (PVA-Lösung) wird angesetzt, indem 30 g PVA zu 100 ml destilliertem Wasser gegeben werden. Die Mischung wird für einige Minuten bei etwa 90 °C erhitzt, bis sich das PVA vollständig gelöst hat.

Nach dem Ansetzen der Polyvinylalkohol-Lösung werden 2 g Natron, 1 g Citronensäure und 10 g Polyvinylalkohol-Lösung sowie ggf. Lebensmittelfarbe in das Becherglas (250 ml) gegeben. Die Mischung wird mit dem Glasstab gerührt und anschließend zum Trocknen (ca. 24 h) in eine Silikonform gefüllt.

Beobachtungen:

- Aufschäumen der Lösung beim Rühren, Bildung eines stabilen Schaums
- nach dem Aushärten: schwammartiger Kunststoff

Fachlicher Hintergrund:

Der Versuch demonstriert die Bildung eines Polyesterschaums auf Basis von Polyvinylalkohol (PVA) und Citronensäure (Vernetzungsmittel). Das Natriumhydrogencarbonat wird als Triebmittel eingesetzt und reagiert mit der Citronensäure unter Bildung von Kohlenstoffdioxid. Dadurch kommt es zur Schaumbildung.

Die Synthese des Polymers erfolgt über eine Polykondensation. Dabei reagieren die Hydroxylgruppen der Polyvinylalkohol-Moleküle mit den Carboxylgruppen der Citronensäure unter Abspaltung von Wasser.

Durch das Zusammenwirken der CO₂-Freisetzung und der Vernetzung (Aushärtung) entsteht der stabile Schaum.

Reaktionsgleichung:

Green Chemistry:

Dieser Versuch eignet sich gut als Beispiel für eine umweltfreundliche Synthese eines Kunststoffschaumes (in Anlehnung an PU-Schaum) im Schulkontext und berücksichtigt mehrere Green Chemistry Prinzipien.

Vermeidung von Abfall	Es entstehen kaum Abfälle, der Klebstoff kann vollständig genutzt werden.
Durchführung ungefährli- cher Synthesen und Ent- wicklung/ Verwendung si- cherer Chemikalien	Alle eingesetzten Chemikalien sind ungiftig und biologisch abbaubar.
Energieeffizienz	Der Schaum entsteht bei Raumtemperatur, es ist kein zusätzliches Erhitzen nötig.
Erneuerbare Ressourcen	Citronensäure stammt aus nachwachsenden Quellen. Polyvinylalkohol kann teilweise biobasiert hergestellt werden.
Nebenprodukte reduzie-	Nebenprodukt: Wasser und nur Kleinstmengen an Koh-
ren	lenstoffdioxid
Biologische Abbaubarkeit	Schaum ist biologisch abbaubar
Risikovermeidung	keine Freisetzung von gefährlichen Stoffen

Kontexte:

Als Kontext bietet sich der Vergleich zwischen konventionellen Schäumen (PU, Styropor) und biobasierten Alternativen an. Auch die ökologische Bewertung von (Werk-)Stoffen kann thematisiert werden.

Bezug zum Rahmenlehrplan: (SenBJF & MBJS, 2021)

- Q1 "Natürliche und synthetische makromolekulare Stoffe"
- Themenfeld: "Kunststoffe problematische Alleskönner"
- Leistungskurs Chemie

Basiskonzept	Zuordnung des Versuchs
Konzept der chemischen Re-	Veranschaulichung einer Polykondensationsreaktion
aktion	als wichtiger Reaktionstyp

Referenzen:

Senatsverwaltung für Bildung, Jugend und Familie Berlin; Ministerium für Bildung, Jugend und Sport des Landes Brandenburg [Sen-BJF& MBJS]. (2021). Rahmenlehrplan für die gymnasiale Oberstufe - Teil C Chemie. Abgerufen am 19. Oktober 2022, von https://moodle.hu-berlin.de/pluginfile.php/4913165/mod_resource/content/10/Rahmenlehr-plan%20f%C3%BCr%20die%20gymnasiale.pdf

Herstellung eines Polyesterschaums

 $Versuchs\text{-}Kategorie\textbf{:}\,\textbf{Kunststoffe}$

Versuchs-Typ: Chemie

Gerät

Becherglas (250 ml), Glasstab, Waage, Messzylinder

Weiterführende Informationen zu Geräten sind in der Geräteverwaltung hinterlegt.

1 Ggf. unten stehende Erläuterungen zu den Piktogrammen beachten.

C Versuchsdurchführung

Die Polyvinylalkohol-Lösung (PVA-Lösung) wird angesetzt, indem 30 g PVA zu 100 ml destilliertem Wasser gegeben werden. Die Mischung wird für einige Minuten bei etwa 90 °C erhitzt, bis sich das PVA vollständig gelöst hat.

Nach dem Ansetzen der Polyvinylalkohol-Lösung werden 2 g Natron, 1 g Citronensäure und 10 g Polyvinylalkohol-Lösung sowie ggf. Lebensmittelfarbe in das Becherglas (250 ml)

gegeben. Die Mischung wird mit dem Glasstab gerührt und anschließend zum Trocknen (ca. 24 h) in eine Silikonform gefüllt.

Reaktionsgleichung

Polyvinylalkohol + Citronensäure --> Polyesterschaum + Wasser

🛕 Gefährdungen durch:

Stoffliche Eigenschaften	vorhanden	
KMR-Stoff 1A/1B		
durch Einatmen		
durch Hautkontakt		
durch Augenkontakt		7
Brandgefahr		
Explosionsgefahr		•
Infektionsgefahr		

weitere	Gefä	hrc	lungen

weitere Gefahren und Hinweise

Tätigkeitsbeschränkung:

Schülerversuch ab Jahrgangsstufe 5

拳 Schutzmaßnahmen

schutzbr **Z**

Schutzhandschuhe

Abzug

Lüftungsmaßnahmen

System

Brandschutzmaßnahmen

Sicherheitswerkbank

Weitere Schutzmaßnahmen

□ Chemikalien							
Stoffbezeichnung - zvG	Anmerkung	Signalwort	Piktogramm	H-Satz	P-Satz	Tätigkeit.	Тур
Lebensmittelfarbe -		-				-	Edukt
Natriumhydrogencarbonat - 2440		-				+	Edukt
Polyvinylalkohol - 32360	w = 30 %	-				-	Edukt
Zitronensäure-1-Hydrat - 35230		ACHTUNG	<u>(1)</u>	H319	P261 P264 P271 P280 P304+P340+P312 P305+P351+P338	S4K	Edukt
Polyesterschaum -		-					Produkt

☐ Biostoffe/Organismen

Es werden keine Biostoffe/Organismen verwendet.

Sicherheitshinweise

Die Betriebsanweisungen und einschlägigen Regelungen für die Schule sind zu beachten.

Persönliche Schutzausrüstung

Eine Gestellschutzbrille ist zu tragen.

Verhalten im Gefahrenfall

Keine besonderen über die allgemeinen Maßnahmen zur Gefahrenabwehr hinausgehenden Maßnahmen nötig.

Gefahrstoffe

Substitution von Gefahrstoffen, Verwendungsformen und -verfahren wurde geprüft. Der Versuch ist zur Vermittlung wesentlicher Lerninhalte <u>nicht verzichtbar</u> und kann unter Einhaltung der in der Versuchsvorschrift genannten Einschränkungen und mit den dort genannten Schutzmaßnahmen durchgeführt werden.

Gefährliche Stoffeigenschaften oder andere Gefährdungen, die eine Durchführung durch Schüler/innen oder Lehrkräfte grundsätzlich ausschließen würden, sind nicht bekannt. Die Stoffliste DGUV Information 213-098 in degintu.dguv.de wurde berücksichtigt.

Können Geräte oder Verfahren durch weniger gefährliche ersetzt werden?

Geräte oder Verfahren können nicht ersetzt werden.

Literatur

keine Angaben

Versuch wird in folgendem Raum durchgeführt:

NaWi-Raum

atum:	Unterschrift:	Erstellt am 11.11.2025 09:28, für
-		Bliesener, Berlin